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A general algorithm for the analytical determination of thermooptical aberrations of concave mirrors is 
suggested. Using as an example mirrors of parabolic profile, analytical relationships are obtained in the 

geometric optics approximation. 

The experience of theoretical and experimental investigations of the thermal aberrations of optical systems 

points to the necessity of developing analytical computational-theoretical techniques [ 1-4 ]. Analytical computational 

procedures are indispensable for solving inverse problems and for interpreting experimentally observed facts and 

results of calculations with the use of modern application packages that differ little from experimental data in 

informative value and generalizations. Only analytical procedures enable one to predict the general trends and, 

more importantly, to study the threshold conditions for the formation of thermal distortions in those cases where 

numerical calculation turns out to be unstable and yields poorly reproducible results. 
The present paper presents an algorithm for obtaining an analytical solution of a straight-through problem 

of determining thermal aberrations from initial given conditions of thermal effects. The algorithm incorporates the 

stages of the solution of a thermal, thermoelastic, and an optical problem. The proposed approach, whose general 

idea was outlined earlier in [1-4 ], is realized in the form of an algorithm distinguished by its compact form as 

compared with alternative schemes of conclusions [1-3]. The algorithm for computing aberrat ions from 

displacements has generality for any thermal effects. 
However, it is evident that to obtain a particular form of the final analytical solution it is necessary to 

specify the conditions of thermal effects and the conditions that determine deformation (conditions of securing). 

Therefore, we considered a particular but very characteristic and typical thermal problem, viz., the fraction of 

radiant light flux energy absorbed by the working surface is a source of thermal disturbances. 
1. Let us consider a beam incident on a reflecting surface parallel to the principal optical axis OX which is 

brought to a focus by a mirror (see Fig. 1). The beam incident on the surface SOS' at a certain point A with the 

coordinates xw and YT will be reflected in the direction AB' and will intersect the principal optical axis at the point 
B'. After being reflected from point A ~ the extreme internal beam E ~ will intersect the main optical axis at the 

point B lying in the focal plane FF'. For a parabolic mirror in the absence of thermal distortions the points B and 

B' coincide. 
Thermal deformations cause a change in the equation for the profile of the working surface of the mirror. 

This leads not only to a change in the focus, but also to the dependence of its value (more precisely of the segment 

OB) on the coordinate y (on the removal of the beam from the principal optical axis). The length of the segment 

BB' in the case where the point corresponds to the extreme external beam determines the value of the longitudinal 
spherical aberration A1, whereas the corresponding segment A 2 (Fig. 1) determines the transverse spherical 

aberration [5 ]. 
The calculations of the thermooptical aberrations are based on an analytical formula which describes the 

coordinate of the mirror focus as a function of the distance between a ray of the axial beam and the principal optical 

axis [1 ]: 
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Fig. 1. Thermal and optical scheme of a mirror. 
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In this case the dependence of ~ on Y, which corresponds to the equation for the profile of the working surface of 

mirrors with account for thermally induced distortion, can always be presented in the form of the functional relation 

(function) Q describing the thermally deformed profile [1-4 ] 

V , )  - - . .  - w 
-x = D 2 Q -Y ," D k = 1 + Uk ; k = 1 , 2", U1 = y '  U2 -- --'x (2) 

where the coefficients D 1 and D 2 take into account the radial u and axial w thermally induced displacements of 

the point on the working surface with the coordinates x and y. An easily comprehensible and compact result is 

obtained for one of the most typical versions of the working surface profile, i.e., parabolic, when [1 ] 

Q ~Y and Y= ~ ;  
2D 1 

(a) 

the measure of the thermally induced distortion of the working surface profile can be described by the value of the 

displacement AT with respect to the initial equation of the parabola T0 = y2/2  

(4) A T = ~ - 2  o =  ~ -  1 ~ - =  " WIuk<< 1 - �9 
D1 

Substituting ~ and (I) into Eq. (1) with account for the increments x = x o + A~, (P = (I) o + A(I), where aP o = 

we easily obtain 

[ - 1 
1 - -  1 d W -  

? = ~  1 - W  2 ~yy y ( I + y 2 )  " (6) 

If we have information about the displacements characterized by one parameter W, we can calculate the temperature 
displacement of the focus A7 0 and the value of the longitudinal spherical thermal aberration A7 determined from 
the relations 
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Aft = [ f ( W )  - f ( W  = 0)ly= m , (7) 

~ =  [ 7 ( Y = p o ) - 7 ( Y = p ) l .  (8)  

2. Consider a particular thermal statement of the problem for a parabolic mirror. Hereafter, all of the 

calculations will be made for a mirror with a central hole. The general solution will yield as a specific case the 
solution for a solid mirror. Let us formulate the basic assumptions: 

1) the heat flux q is constant within the change in the coordinate (see Fig. 1) r0 -< y < r (0 _ y < r); 

2) the thermal regime of the mirror is stationary; 

3) the thermal properties of the material from which it is made are isotropic; 

4) the mirror can be approximated by a disk upon satisfaction of the condition [1 ] 4p _< k,  p = r / R ,  k = l / r ;  

5) there is heat removal from the surfaces x = 0, y = ro, y = r (see Fig. 1) which is characterized by the 

heat transfer coefficients ax ,  ao ,  ay ,  respectively, or by the numbers BiN = a N  ~/2t; N = O, x ,  y; ~ = l, r. 

Let us consider a typical case where the surfaces x0 and y = r0 do not come in contact with heat sinks (Bix 

= Bi0 = 0). This assumption leads to a one-dimensional-radial temperature field which is described, with an error 

not exceeding 2 %, by an analytical solution of the form [2 ] 

~ ( Y )  = 9 0  p + B l l n  
Biy 

B =  
2 (1 - 7 2) + Biy ' 

A 9  0 qr  2 
B 1 = 2 7 2 B ,  7 = ~ ,  0 =  T -  Tam, 0 0 -  B ' A 0 0 -  4 2 k "  

(9) 

3. Consider the statement of the problem concerning the deformation of the profile of the working surface 

of a mirror in the case of free expansion and with a fixed boundary of the outer side surface. Let us restrict our 

discussion to an axisymmetric problem without twisting assuming the mechanical properties of the mirror material 

to be isotropic and the mirror to be a thin disk (the plane stressed state approximation cr x = 0). 

In this case the mathematical statement of the problem is reduced to the following form of the equilibrium 

equation and relationships between stresses and strains [6 ]: 

0 %  % - a o (10) 
+ - -  - 0 ,  

Oy y 

1 1 
ey  - a O = --E ((Ty - V CrO) , e.O - a O ..= - ~  (tTO - V Cry) , 

v 

ex - a O. = - N (% + ~ o ) ,  

where 

Ou u Ow 
ey -- Oy ' eo = y '  ex - Ox " 

The solution of systems (10) and (11) is known [6]: 

1 
u = (1 "1- v) a y  

.~ C2 yody+ q y + - - ,  
r o Y 

(11) 
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TABLE 1. Analytical Expressions for Intermediate Parameters 

Parameter  Free boundary Fixed boundary 

a2 

a u  

aoy 

1 - B  ~ + B l l n  , ~  - 

1 
- J1 (1 + v) dh Jlp 1 + v 

' B )  
b -  

(1 + v) By 2 G 0 

(v 
+ J2p ~ ~o0 

l + v  
- - B  

(1 + v )  f~ 1 - ~ -  

' B )  1 - ~ - By 2 [1 + G 0 (1 - ml) ] -~ 

,1 ) 
= I - B  ~ + c o  , when p <0 .1  

\ 

a2 [p2 + 2 - y2 (m3 + 2) I -~ 2a2 (1 - 72), 

2 

+~0 ) - J 2  (1 

+ 

+ v) 6h 

+~'2B [1 - ff2(1 + GO) l }  

- B 7 2 ( 1  + G o ) /  - 72B ~ - l n  

J [ 1 ) ]  
( 1 - m l )  f~* B ~ + c o  - 1  + m 2 =  

,1 ) 
~* 1 - B  -~+co , w h e n p < 0 . 1  

when p < 0.1 

CrY=-aE1 Yf r 0 l-rE 2 [C l ( l+v ) -C2(1 -v ) l  I ' 

(12) 

1 y. F ! 

ao=aE2 J yOdy - a E O + - - ~  [ C  1 (1 + v )  + C  2 ( 1 - v )  2 
y r 0 1 - v L Y 

Substituting expressions for stresses (12) into the last equation of system (11), we obtain a formula for determining 
the axial displacements 

I 2v C1] x.  w= a O(l+v) 1 - v  

To find the constants C1 and C2, we shall avail ourselves of the following boundary conditions: 
1. The case of free expansion (ay(y = r) = 0). Hence 

(13) 

r 

cl-f~ 2 a 2 (1 -v) f y~dy. 
r - r 0 r 0 

2. The case of a fixed boundary (u(y = r = 0): 

f 
C 1 = 

(1 - v 2) a r 
2 f yOdy, 

( 1 - v )  r 2 +  (1 + v )  r 0 r 0 
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2 f fr, 1 - Y  
C 1 = - C i t l  + v) f~, f~= 

2 ~ 
( l - v ) + ( 1  +v )  7 

C2 is sought proceeding from the condition of the absence of stresses on the hole boundary: ay(y = r 0) = 0; C fr'f -- 
C~ r'f r~ (1 + v)/(1 - v). Using relations (2) and (4) for a temperature field of form (9), we obtain analytical 

expressions for IVy, where the subscript ] = 1, 2 corresponds to free expansion 1, and fixed boundary 2 for all the 
cases considered. The values of Wj are given in Table 1, where dh = or0 o . In Table 1 the following designations 
are adopted: 

B y B1 
J1 = 1 - ~ -  y 2 ~ + - - ~  1 - I n  

2 _2] 
( ~ )  + 771n72 ( ~ )  ' 

1 - 72 

_ 

E 2 _2 1 

Jlp = J1 (Y = P) f2p = J2 (Y =/9) = (1 -- 7 2) Jlp ,  

-2 

1 +~'7 2 ' ~ ' -  1 - v '  ~~176  1 +~'7 2" 

Expanding all the components involved in the expressions in Table 1, we obtain 

~ ( ) 2 ( i - 1 )  
-Wy= c3h aiy 

i=0 
(14) 

The values of the coefficients aij are also included into Table 1 where the following designations are adopted: 

b = B72 [(I + v) + (I + Go) I , 
2 2 

1 7 lny  
G0 = ~- + G, G -  2" 

1 - 7  

Substituting Eq. (14) into Eq. (4), we obtain a formula for the measure of the distortion of the profile A~/: 

AX]=c~h 2 2 _ 2 p  ~" ai] ( p ) 2 i  (15) 

i=0 

4. Substituting Eq. (14) into Eq. (6) with account for Eqs. (7) and (8), we obtain the resultant formulas 

for?j, and 9j  

7 ] = - ~  ~Sh [ i (1 - I -y2 ) -3 r  21 - , 
i=O 

1 " -  Afj 0 = - ~ t ~ h  ai]72(l 1) [i(1 +p272 ) - p 2 7 2 ]  = 
i=0 
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5h [p2 2 (02 y2 5h - 
= ~ -  aoj - a2 7 + 2) -- amy ] Y=P0 = T F] 0 = P0) '  (16) 

- 1 2 
a4=-  5hE 

i=0 

aid {/92 (y2 i_  1 ) -  i [y  2(i-1) +/92 (72i_  1 ) -  1]} = 

- 2 2 a 2 ( 1 _ y 2 )  1 +~-2 (1 + y  2) -----A_P/. 

The expressions for Fj and AFj are given in Table 1, where the following designations are used: 

2 2  p272{ I 1 ( 3 + 7 2 )  l ny2 ]  } rnl = P 7 (1 + v),  m 2 = (1 + v) 1 - B -~ - , 

2 2 Q* 2 
m 3 = P  7 , =(1  + v )  Q,  co= 7 (1 +G0) .  

(17) 

Whenp < 0.1, the expressions in Table 1 can be simplified by neglecting the values m] - m3 due to their smallness 

except for the case 7 >- 0.7 (in the formula for F1) and 7 - 0.3 (for 7v 2) when the error exceeds !% and in some 
cases 10Vo. Table 1 contains the formulas in their simplified form. As a result, for long-focus mirrors the finite 
expressions can be presented in a very simple form 

AEy = 5h 2 (18) 
-~-p a 0 + a 1 + a 2 , 

[ ( )] 1 (19) AI~ 1 - B  , 

a z o  = - a z o ,  (20) 

Af02 = _ Oh (1 + v) B (1 - y2) (21) 
' 2 

The transverse spherical thermal aberration is expressed in terms of the longitudinal one [1 ] 

(22) 

For convenience of analysis of the thermal distortions in the working surface profile of the mirror, Fig. 2a presents 
the relations for the coefficients aoj(7) and au(7) in Eq. (18) for determining the displacements of the focus Af 0 

(Fig. 2b). 
The results obtained make it possible to draw the following conclusions. 
1. Since the function of the displacements AE is incorporated in the general algorithm for determining the 

thermal aberrations as the principal determining parameter, with its derivative used as the second parameter, the 

algorithm is general, whereas the specific results are determined by the form of the function of displacements which 
depends on the initial thermal problem and the conditions of fixing the mirror. The present work considers in 
analytical form for the first time the effect of the limitation of thermal expansion on the development of thermal 
deformations and thermal aberrations. 

2. With the considered (and other) types of thermal effects leading to a radial temperature profile of the 
form given by Eq. (9), the thermal deformations distort the parabolic profile up to the 4th degree of asphericity. 
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Fig. 2. The coefficients ai]: 1) all; 2) ao]; (a) and relative values of ~ 6 h  
(b) vs the coefficients of central screening. Solid lines, free expansion q -- 

1), dashed line, fixed boundary (]= 2). In calculations v = 0.3, B = 1. 

3. Within the scope of the thermal problem considered, the temperature displacement of the focus with 

different means of fixing (free expansion and fixed boundary of the outer surface) differs in sign and value. For 

a solid mirror at v = 0.3 this difference turns out to be twofold. 

4. For the extreme cases of fixing considered, the longitudinal spherical thermal aberration is identical and 

has a negative sign, i.e., the beams reflected by the peripheral portions of the mirror intersect the principal optical 

axis at the points located at a larger distance from the mirror than the paraxial focus. In the case of uniform heating 

the aberration is absent. 
5. The resulting analytical solutions (18)-(22) are extremely convenient for practical estimates. 

As an example, we can evaluate the threshold values of temperature deformations. Prescribing the 

aberration limitation and proceeding from the Rayleigh number I Af I _< A/4 we can easily see from Eq. (21) that 
ItCh lim I < A/2(1 +v)R for B = I and 7 -- 0. Taking A = 0.7.10 -6 m, R = 1 m, v = 0.3 as the initial values, we obtain 

I~hliml < 2.7" 10 -7. At a = 10 -5 K -1 this corresponds to the ultimate admissible temperature drop 10olB=l = 

A0 < 0.03 K. The heat flux corresponding to such a temperature drop for a mirror with parameters r - - l0  -1 m, p 

= 0.1, k = 0.4, 2 = 10 W/mK amounts to ~ 5 W/M E, which roughly corresponds to the absorption of 0.3% of the 

power of the solar light flux by the mirror surface. The displacement of the focus in the example considered will 

come to A/0 = R6hlim/4 = 4-0.07 #m in the case of free expansion and to A/~  = -(1 + v ) / (1 - v )A f  0 ~ -0.14 #m for 

a fixed outer boundary of the mirror. Moreover, in both cases All,2 ---0.175 ym. 

N O T A T I O N  

T, temperature, K; Tam, ambient temperature, K; 0, superheating above the ambient temperature:, K; 2, 

thermal conductivity coefficient of the mirror material, W/(m-K); x, y, coordinates; r, radius of mirror, m; r 0, 

radius of hole in mirror, m; l, mirror thickness, m; q, heat flux density, W/m2; a o, ax, ay, heat transfer coefficients 

on corresponding surfaces, W/(m 2. K); ay ,a0, ax, normal components of stresses in cylindrical coordinates; ey, e0, 

ex, deformations corresponding to these components; E, Young modulus; v, Poisson coefficient; u, w, components 

of radial and axial displacement; a, coefficient of thermal expansion, K-I; f, focal length of mirror, m; R, paraxial 

radius of mirror, m; L, wave length, mm. 
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